728x90
반응형

어텐션 5

Transformer #5 - Decoder Detail

0. Introduction​안녕하세요, 이번 Post에서는 Transformer의 Decoder에 대해서 자세히 알아보도록 하겠습니다.​Transformer Decoder의 각 부분을 구체적으로 하나씩 알아보도록 하겠습니다.​​​​Encoder에서 살펴본 구조도 몇몇 보이지만, Decoder는 이전의 Decoder 출력을 기반으로 현재 출력을 생성해 내는 자기 회귀적 특징으로 인해 조금씩 다른 부분이 있습니다.​Decoder에서 이런 자기 회귀적인 특징이 가장 많이 반영되어 있는 부분이 Masked Multi-Head Attention 부분이니 먼저 이 부분을 자세히 알아보도록 하겠습니다.​​​​1. Masked Multi-Head Attention​​ ​​​1.0. Shifted Right​Decod..

Deep_Learning 2024.05.23

Transformer #4 - Encoder Detail

안녕하세요, 이번 Post에서는 Transformer의 Encoder에 대해서 자세히 알아보도록 하겠습니다.​Transformer Encoder의 각 부분을 구체적으로 하나씩 알아보도록 하겠습니다.​​0. Tokenizer & Input Embedding Layer​​​​Embedding Layer에 문장 그대로 입력할 수 없기 때문에 문장을 Model이 사용할 수 있는 Vector 형태로 변환해야 합니다.​Tokenizer를 이용해 문장을 Token 단위로 나누고, 나눈 Token을 Embedding Layer에 입력하여 Model이 이해할 수 있는 Vector 형태로 만듭니다.​Transformer는 WordPiece Tokenizer를 사용하여 Token을 나누며, Transformer의 Embed..

Deep_Learning 2024.05.21

Transformer #3 - Overall

안녕하세요, MoonLight입니다.​이번 Post에서는 Transformer의 전체 구조를 개괄적으로 알아보도록 하겠습니다.​​​ ​​Transformer의 전체 구조의 위와 같습니다. 왼쪽이 Encoder의 구조이고, 오른쪽이 Decoder입니다.​​0. Encoder​먼저 Encoder의 구조에 대해서 간략하게 살펴보겠습니다.​​​0.0. Tokenizer​가장 아래쪽에 Inputs이 있습니다. Transformer에서 Input은 단어들로 이루어진 문장이 되겠죠.​이 그림에서는 생략되어 있는데, Input Embedding Layer에 문장 전체가 들어갈 수는 없기 때문에 그전에 tokenizer를 이용하여, 문장들을 Token 단위로 나눕니다.​Transformer에서는 주로 WordPiece ..

Development Tip 2024.04.29

Transformer #2 - Self Attention

0. Introduction ​ ​ 다른 글에서 Attention Mechanism에 대해서 알아보았습니다. ​ Attention Mechanism에 대해서 자세히 알아보시려면 아래 글을 읽어보시기를 추천드립니다. https://moonlight314.tistory.com/entry/Transformer-1-Attention-Mechanism Transformer #1 - Attention Mechanism 0. Background ​ Attention Mechanism이 나오기 전에는 Seq2Seq Model이 주로 사용되었습니다. ​ Seq2Seq Model은 당시에는 훌륭한 Idea였지만, 치명적인 문제점을 가지고 있었습니다. ​ 그 어떤 입력값이 들어 moonlight314.tistory.com ..

Deep_Learning 2024.04.22

Transformer #1 - Attention Mechanism

0. Background ​ Attention Mechanism이 나오기 전에는 Seq2Seq Model이 주로 사용되었습니다. ​ Seq2Seq Model은 당시에는 훌륭한 Idea였지만, 치명적인 문제점을 가지고 있었습니다. ​ 그 어떤 입력값이 들어오더라도 최종적으로 출력은 고정된 길이의 Vector(Hidden State)가 나온다는 것입니다. ​ 입력 문장이 짧으면 별문제가 안되겠지만, 입력 문장이 길어질수록 그 안에 담긴 내용들, 특히 앞쪽의 단어들은 거의 제대로 표현할 수 없다는 문제가 있었습니다. ​ Attention Mechanism은 이 문제를 개선하기 위해서, Seq2Seq 구조의 각 RNN Cell들의 출력(Hidden State)도 Decoder의 입력으로 사용하자는 Idea에서 ..

Deep_Learning 2024.04.17
728x90
반응형