728x90
반응형

learning 19

비지니스 데이터 과학

한빛미디어 '나는 리뷰어다' 활동을 위해서 책을 제공받아 작성된 서평입니다. 0. 소개 Big Data & Machine Learning / Deep Learning이 세상의 빛을 본지가 꽤 되었지만, 여전히 뜨거운 관심을 받고 있습니다. 앞으로도 이런 관심은 대체할 만한 새로운 개념이 나오기 전까지는 계속될 것입니다. Big Data & Machine Learning / Deep Learning이 관심을 받게 된 이유 중에 하나가 누구나 쉽게 접근할 수 있는 다양한 도구들이 많이 있기때문이기도 할 것입니다. 손쉬운 접근성에 힘입어 과학, 공학 분야 뿐만 아니라 의학, 미술, 정치, 경제 등에 이르기까지 매우 다양한 분야에서 훌륭한 역할을 수행하고 있습니다. 이 책은 특별히 비즈니스 분야에 사용되는 사례..

Book Review 2023.09.07

Machine Learning At Working - 머신러닝 실무 프로젝트(2판)

한빛미디어 '나는 리뷰어다' 활동을 위해서 책을 제공받아 작성된 서평입니다. 0. 소개 이제는 전공자가 아니어도 뉴스나 방송을 통해 Machine Learning / Deep Learning이라는 말을 너무 흔하게 들을 수 있는 상황이 되었다. 음성인식 , 추천 시스템 , 이미지 생성 등은 이미 우리의 일상에서 너무나 흔한 일이고, Tensorflw / PyTorch / Scikit-learn같은 우수하고 훌륭한 Framework은 너무나 쉽게 우리들을 AI의 세계로 발을 들여놓게 만들어 준다. 하지만, 이렇게 현실속에 깊게 들어와 있는 Machine Learning / Deep Learning이지만, 정작 내가 하는 일에 이 기술을 적용하려고 하면 관련 전공자라고 해도 절대 쉬운 일이 아니다. '우리 ..

Book Review 2023.09.04

머신러닝 파워드 애플리케이션( Building Machine Learning Powered Applications )

한빛미디어 '나는 리뷰어다' 활동을 위해서 책을 제공받아 작성된 서평입니다. 0. 소개 만약 여러분이 직접 만든 추천 시스템 Machine Learning Model을 여러 사람들에게 서비스하고 싶다면 ? 여러분들은 다양한 Dataset으로 훌륭한 Data Preprocessing을 할 수 있고, 훌륭한 직감을 가지고 있으며 훌륭하게 여러분의 Model을 Tuning 할 수 습니다. 수 없이 많은 .fit()을 호출하면서 Accuracy / ROC-AUC 등의 지표를 보면서 더욱 나은 성능이 나올 수 있도록 Model을 만들 수 있는 능력이 있습니다. 하지만, 여러분들이 훌륭하게 동작하는 Model을 만들 수 있는 능력이 있다고 하더라도, 그 Model을 이용하여 실제 서비스를 구축하는 것은 완전히 다른..

Book Review 2023.09.03

비전 시스템을 위한 딥러닝(Deep Learning For Vision System)

한빛미디어 활동을 위해서 책을 제공받아 작성된 서평입니다. Deep Learning이 대중들에게 이름을 알리기 시작한 것은 무엇보다도 Image Data를 처리하는 데에 있어서 인간에 버금가는 능력을 보여주면서부터라고 생각합니다. 그 이후로 Deep Learning / AI가 우리가 알게 모르게 일상생활에 깊숙이 파고들고 있는 것이 사실입니다. 하지만, Python을 익히고 Deep Learning에 자주 사용되는 Package들의 사용법을 익힌 후에 실제로 간단한 Image Classification 작업을 해보는 것은 생각만큼 쉽지 않습니다. 다양한 예제들이 많지만 대부분 수학적인 원리나 해당 Code가 어떤 일을 하는지 그리고 왜 필요한지에 대해서는 자세히 설명되어 있지 않거나 알 수 없는 수학 기..

Book Review 2023.09.02

The Strategy of Transfer Learning & Fine Tuning

0. Transfer Learning 다른 Dataset으로 이미 학습된(Pre-Trained) Model을 가져와서 내가 하고자 하는 작업에 적용하는 것을 말합니다. 1. Fine Tuning Pre-Trained Model은 다른 Dataset에서 학습된 Weight & Bias를 가지고 있기 때문에 새롭게 적용하려는 작업에 잘 맞지 않을 수가 있다. Pre-Trained Model을 새로운 작업에 맞게 Weight & Classifier를 새롭게 조정하는 작업을 Fine Tuning이라고 한다. Pre-Trained Model 전체를 다시 Tuning할 지 혹은 일부만 Tuning할 지는 여러가지 상황을 고려하여 선택한다. 3. Dataset의 특성과 양에 따른 Fine-Tuning 전략 3.1. ..

Deep_Learning 2023.09.02

Tensorflow Input Pipeline

주어진 Data로 부터 Train에 필요한 Data형태로 변환하기까지는 매우 지루하고 험난한 과정입니다. Model에 입력 Foramt에 맞게 Shape을 변경하고, Data Augmentation도 고려해야 합니다. 가장 중요한 것은 주어진 Data가 수십, 수백만개가 있다면 Performance 또한 중요한 고려 요소가 됩니다. 이런 모든 고민을 해결해 주기 위해서 Tensorflow에서는 tf.data Module과 tf.data.Dataset Module을 준비놓았습니다. 이번 Post에서는 Tensorflow를 이용하여 효율적인 Data Input Pipeline을 만드는 방법을 알아보고자 합니다. tf.data.Dataset에서는 map / prefetch / cache / batch 이렇게 ..

Deep_Learning 2023.08.26

Ubuntu에 GPU & Tensorflow 사용환경 설정

이번 Posting에서는 GPU를 이용한 Deep Learning 환경 구축할 때 가장 일반적이며 많이 사용되는 Configuration인, Linux & nVidia GPU를 사용한 환경 설정을 하는 방법을 알아보도록 하겠습니다. 제가 사용할 Linux와 GPU를 아래와 같습니다. GPU : GTX 1050 Ti 6GB Ubuntu : 18.04 0. Prepare Ubuntu Installation 먼저 설치할 Ubuntu 배포판의 Image File을 Download하도록 하겠습니다. Ubuntu Image File Download 저는 18.04 Version을 사용하도록 하겠습니다. 설치를 편리하게 하기 위해서 방금 Download한 Ubuntu 설치 ISO Image를 USB Drive에 굽도..

Deep_Learning 2023.08.20

Sequence-to-sequence Model ( Encoder / Decoder Model )

1. Introduction Sequence-to-sequence Model은 Machine Translation , Text Summarization , Image Captioning에서 두각을 나타내는 Deep Learning Model입니다. 2014년 Google에 의해서 소개되었습니다.(논문, https://arxiv.org/pdf/1409.3215.pdf) Sequence-to-sequence Model은 Sequence Data를 Input으로 받아서, Sequence Data로 Mapping해 주는 Model입니다. ( Many-To-Many) 흔히, Encoder-Decoder Model이라고도 하는데, Sequence Data를 Encoder에서 Input Sequence Data의 정..

Deep_Learning 2023.08.19

LSTM ( Long-Short Term Memory )

LSTM은 RNN의 특별한 한 종류로써, 긴 의존기간이 필요한 학습을 할 수 있는 능력이 있습니다. LSTM의 목적은 명확하게 Long-Term Dependency를 제거하고자 Design되었습니다. 이 Post는 아래 Link의 글을 참고하였습니다. Understanding LSTM Networks LONG SHORT-TERM MEMORY 0. LSTM의 기본 구조 위의 구조는 tanh를 Activation Function으로 가지는 RNN의 기본적인 구조입니다. 아래의 그림은 LSTM의 기본 Cell 구조를 나타내고 있습니다. LSTM도 기본적으로 RNN과 유사한 구조를 가지지만, 몇 개의 Layer가 추가되었습니다. 본격적으로 하나씩 살펴보기 전에 기호들의 정의를 살펴보도록 하겠습니다. 1. Cel..

Deep_Learning 2023.08.19
728x90
반응형